Super Stolarsky-3 Mean Labeling of Quadrilateral Snake Graphs

¹S.S. Sandhya, ²E. Ebin Raja Merly and ³S.Kavitha

 ¹Department of Mathematics, SreeAyyappa College for Women, Chunkankadai– 629003, Tamilnadu, India
 ² Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629165, Tamilnadu, India,
 ³Department of Mathematics, "Holy Cross College, Nagercoil- 629 004, Tamilnadu, India.

Abstract

Let G = (V, E) be a graph with p vertices and q edges. Let f: V (G) \rightarrow {1, 2, ..., p + q} be an injective function. For a vertex labeling f, the induced edge labeling f* (e=uv) is defined by

 $f^* (e) = \left[\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}} \right] \text{ (or) } \left[\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}} \right].$ Then f is called a Super Stolarsky-3 Mean labeling if $f(V(G) \cup \{f(e) / e \in E(G)\} = \{1, 2, ..., p + q\}.$

A graph which admits Super Stolarsky-3 Mean labeling is called Super Stolarsky-3 Mean graphs.

In this paper, we investigate Super Stolarsky-3 Mean labeling of Quadrilateral Snake graphs.

Keywords - Graph, Super Stolarsky-3 Mean labeling, Quadrilateral Snake graph, Double Quadrilateral Snake graph, Triple Quadrilateral Snake graph, Four Quadrilateral Snake graph.

1. INTRODUCTION

All graphs G = (V, E) with p vertices and q edges are finite, simple and undirected. For a detailed survey of graph labeling we refer Gallian (2017) [1]. For all other standard terminologies and notations we follow Harary[2]. S.S. Sandhya, E.Ebin Raja Merly and S.Kavitha introduced a new type of Labeling called "Stolarsky-3 Mean **Labeling of Graphs" in [4].** In this paper we prove that Double quadrilateral Snake, Triple Quadrilateral Snake, Four Quadrilateral Snake graphs are Super Stolarsky-3 Mean labeling of graphs. The following definitions and theorems are useful for our present investigation.

A walk in which all the vertices $u_1, u_2, ..., u_n$ are distinct is called a path. It is denoted by P_n . A Quadrilateral snake Q_n is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to two new vertices v_i and w_i respectively and then joining v_i and w_i . That is, every edge of a path is replaced by a cycle C_4 . Double Quadrilateral snake $D(Q_n)$ consists of two Quadrilateral snakes that have a common path. Triple Quadrilateral snake $T(Q_n)$ consists of three Quadrilateral snakes that have a common path. Four Quadrilateral snake $F(Q_n)$ consists of Four Quadrilateral snakes that have a common path.

Definition 1.1: Let G = (V,E) be a graph with p vertices and q edges. Let $f:V(G) \rightarrow \{1,2,...,p+q\}$ be an injective function. For a vertex labeling f, the induced edge labeling f^* (e=uv) is defined by

f* (e) =
$$\left[\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}}\right]$$
 (or) $\left[\sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}}\right]$. Then f is called a Super Stolarsky-3 Mean labeling if f(V(G) \cup {f(e) / e \in E(G)}= {1, 2, ..., p + q}. A graph which admits Super Stolarsky-3 Mean labeling is called Super Stolarsky-3 Mean graphs.

Theorem 1.2 [5]: Quadrilateral Snake Q_n is Super Stolarsky-3 Mean graph (S.S. Sandhya, E.Ebin Raja Merly and S.Kavitha).

2. MAIN RESULTS

Theorem 2.1: Double Quadrilateral Snake $D(Q_n)$ is Super Stolarsky-3 Mean graph.

Proof:

Let $D(Q_n)$ be the Double Quadrilateral Snake graph.

Consider a path u_1, u_2, \ldots, u_n .

To Construct D (Q_n). Join u_i and u_{i+1} to four new vertices v_i , w_i , x_i , y_i , $1 \le i \le n-1$.

Define a function $\mathbf{f} : V(D(Q_n)) \rightarrow \{1, 2, \dots, p+q\}$ by

$$f(u_i) = 12i -7, 1 \le i \le n.$$

$$f(v_i) = 12i -8, 1 \le i \le n.$$

$$f(w_i) = 12i -4, 1 \le i \le n.$$

 $f(x_i) = 12i - 7, 1 \le i \le n.$

 $f(y_i) = 12i - 1, 1 \le i \le n.$

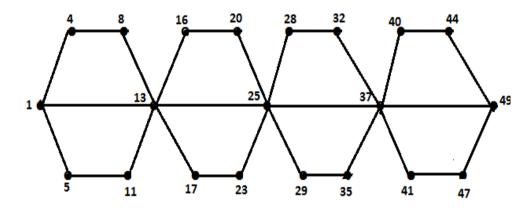
Then the edges are labeled with

 $\begin{aligned} \mathbf{f}(u_{i}u_{i+1}) =& 12i -5, \ 1 \leq i \leq n-1. \\ \mathbf{f}(u_{i}v_{i}) =& 12i -10, \ 1 \leq i \leq n-1. \\ \mathbf{f}(v_{i}w_{i}) =& 12i -6, \ 1 \leq i \leq n-1. \\ \mathbf{f}(w_{i}u_{i+1}) =& 12i -2, \ 1 \leq i \leq n-1. \\ \mathbf{f}(u_{i}x_{i}) =& 12i -9, \ 1 \leq i \leq n-1. \\ \mathbf{f}(x_{i}y_{i}) =& 12i -3, \ 1 \leq i \leq n-1. \\ \mathbf{f}(y_{i}u_{i+1}) =& 12i, \ 1 \leq i \leq n-1. \end{aligned}$

Then we get distinct edge labels.

Hence D (Q_n) is Super Stolarsky-3 Mean graph.

Example 2.2: The SuperStolarsky-3 Mean labeling of $D(Q_4)$ is given below.



Theorem 2.3: Triple Quadrilateral Snake $T(Q_n)$ is Super Stolarsky-3 Mean graph. **Proof:**

Let T (Q_n) be the Triple Quadrilateral Snake graph.

Let P_n be the path u_1, u_2, \ldots, u_n .

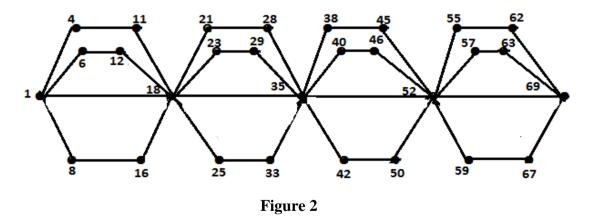
To Construct $T(Q_n)$. Join u_i and u_{i+1} to six new vertices v_i , w_i , v_i' , w_i' and x_i , y_i , $1 \le i \le n-1$. Define a function $\mathbf{f} : V(T(Q_n)) \rightarrow \{1, 2, ..., p+q\}$ by $\mathbf{f}(u_i) = 17i - 16, 1 \le i \le n$. $\mathbf{f}(v_i) = 17i - 13, 1 \le i \le n$.

 $f(w_i) = 17i - 6, 1 \le i \le n.$

 $f(v_i) = 17i - 11, 1 \le i \le n.$ $f(w_{i'}) = 17i - 5, 1 \le i \le n.$ $\mathbf{f}(x_i) = 17i - 9, 1 \le i \le n.$ $f(y_i) = 17 \text{ i} - 1, 1 \le i \le n.$ Then the edges are labeled with $\mathbf{f}(u_i u_{i+1}) = 17i -7, 1 \le i \le n-1.$ $\mathbf{f}(u_i v_i) = 17 \text{ i} - 15, 1 \le i \le n - 1.$ $\mathbf{f}(\mathbf{u}_i v_{i'}) = 17 \text{ i} - 14, 1 \le i \le n - 1.$ $\mathbf{f}(v_i w_i) = 17i - 10, 1 \le i \le n - 1.$ $\mathbf{f}(\boldsymbol{v}_{i}'w_{i}') = 17i-8, \ 1 \le i \le n-1.$ $\mathbf{f}(w_i u_{i+1}) = 17i - 3, 1 \le i \le n - 1.$ $\mathbf{f}(w_i u_{i+1}) = 17i - 2, 1 \le i \le n - 1.$ $\mathbf{f}(u_i x_i) = 17i-12, \ 1 \le i \le n-1.$ $\mathbf{f}(x_i y_i) = 17i-4, \ 1 \le i \le n-1.$ $\mathbf{f}(y_i u_{i+1}) = 17i, \ 1 \le i \le n-1.$ Then we get distinct edge labels.

Hence T (Q_n) is Super Stolarsky-3 Mean graph.

Example 2.4: The SuperStolarsky-3 Mean labeling of $T(Q_4)$ is given below.



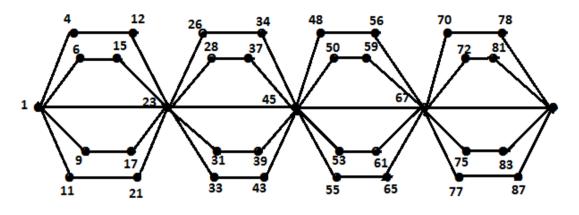
Theorem 2.5: Four Quadrilateral Snake $F(Q_n)$ is Super Stolarsky-3 Mean graph. **Proof:**

Let $F(Q_n)$ be the Four Quadrilateral Snake graph.

Let P_n be the path u_1, u_2, \dots, u_n .

To construct $F(Q_n)$, Join u_i and u_{i+1} to eight new vertices v_i , w_i , v_i' , w_i' , x_i , y_i and $x_{i'}$, $y_{i'}$, $1 \le i \le n-1$. Define a function $\mathbf{f}: V(F(Q_n)) \rightarrow \{1, 2, \dots, p+q\}$ by $f(u_i) = 22i - 21, 1 \le i \le n.$ $f(v_i) = 22i - 18, 1 \le i \le n.$ $f(w_i) = 22i - 10, 1 \le i \le n.$ $f(v_i) = 22i - 16, 1 \le i \le n.$ $f(w_{i'}) = 22i - 7, 1 \le i \le n.$ $f(x_i) = 22i - 11, 1 \le i \le n.$ $f(y_i) = 22 i - 1, 1 \le i \le n.$ $\mathbf{f}(x_{i'}) = 22i - 11, 1 \le i \le n.$ $f(y_i) = 22 i - 1, 1 \le i \le n.$ Then the edges are labeled as $\mathbf{f}(u_i u_{i+1}) = 22i -5, 1 \le i \le n - 1.$ $\mathbf{f}(u_i v_i) = 22 \text{ i } -20, 1 \le i \le n-1.$ $\mathbf{f}(\mathbf{u}_{i}v_{i'}) = 22 \text{ i} - 19, 1 \le i \le n - 1.$ $\mathbf{f}(v_i w_i) = 22i - 14, 1 \le i \le n - 1.$ $f(v_i w_i) = 22i-12, \ 1 \le i \le n-1.$ $\mathbf{f}(w_i u_{i+1}) = 22i - 4, 1 \le i \le n - 1.$ $\mathbf{f}(w_i u_{i+1}) = 22i - 3, 1 \le i \le n - 1.$ $f(u_i x_i) = 22i-15, \ 1 \le i \le n-1.$ $\mathbf{f}(u_i x_{i'}) = 22i-17, \ 1 \le i \le n-1.$ $\mathbf{f}(x_i, y_i) = 22i-8, \ 1 \le i \le n-1.$ $f(x_i y_i) = 22i-6, 1 \le i \le n-1.$ $f(y_i u_{i+1}) = 22i, 1 \le i \le n-1.$ $\mathbf{f}(y_i | u_{i+1}) = 22i-2, 1 \le i \le n-1.$ Then we get distinct edge labels.

Hence $F(Q_n)$ is Super Stolarsky-3 Mean graph.



Example 2.6: The SuperStolarsky-3 Mean labeling of $F(Q_4)$ is given below.

3. CONCLUSION

In this paper we discussed Super Stolarsky-3 Mean Labeling behavior of double, triple and Four Quadrilateral Snake graphs. The authors are of the opinion that the study of Super Stolarsky-3 Mean labeling of Quadrilateral Snake graphs shall be quite interesting and also will lead to new results.

4. ACKNOWLEDGEMENTS

The authors thank the referees for their valuable comments and suggestions.

REFERENCES

- [1] J.A. Gallian, "A dynamic survey of graph labeling", The electronic Journal of Combinatories 17(2017),#DS6.
- [2] F.Harary, 1988, "Graph Theory" NarosaPuplishing House Reading, New Delhi.
- [3] P.Jeyanthi, D.Ramya and P.Thangavelu, On super mean labeling of some graphs, SUTJournal of Mathematics, 46(1) (2010), 53–66.
- [4] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Graphs" Communicated to Journal of discrete Mathematical Sciences and Cryptography.
- [5] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Super Stolarsky-3Mean labeling of Some Path Related graphs" Communicated to International Journal of Mathematical combinatorics.

- [6] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Some Special Graphs" Communicated to Global Journal of Pure and Applied Mathematics.
- [7] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Some New Results on Super Stolarsky-3 Mean Labeling" Communicated to International Journal of Mathematics Research.