Super Stolarsky-3 Mean Labeling of Quadrilateral Snake Graphs

${ }^{1}$ S.S. Sandhya, ${ }^{2}$ E. Ebin Raja Merly and ${ }^{3}$ S.Kavitha
${ }^{l}$ Department of Mathematics, SreeAyyappa College for Women, Chunkankadai- 629003, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, Tamilnadu, India,
${ }^{3}$ Department of Mathematics, QHoly Cross College, Nagercoil- 629 004, Tamilnadu, India.

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with p vertices and q edges. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2$, $\ldots, \mathrm{p}+\mathrm{q}\}$ be an injective function. For a vertex labeling f , the induced edge labeling f^{*} (e=uv) is defined by f^{*} (e) $=\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ (or) $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$. Then f is called a

 Super Stolarsky-3 Mean labeling if $f(V(G) \cup\{f(e) / e \epsilon E(G)\}=\{1,2, \ldots, p+q\}$.A graph which admits Super Stolarsky-3 Mean labeling is called Super Stolarsky-3 Mean graphs.

In this paper, we investigate Super Stolarsky-3 Mean labeling of Quadrilateral Snake graphs.
Keywords - Graph, Super Stolarsky-3 Mean labeling, Quadrilateral Snake graph, Double Quadrilateral Snake graph, Triple Quadrilateral Snake graph, Four Quadrilateral Snake graph.

1. INTRODUCTION

All graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with p vertices and q edges are finite, simple and undirected. For a detailed survey of graph labeling we refer Gallian (2017) [1] . For all other standard terminologies and notations we follow Harary[2]. S.S. Sandhya, E.Ebin Raja Merly and S.Kavitha introduced a new type of Labeling called "Stolarsky-3 Mean

Labeling of Graphs" in [4]. In this paper we prove that Double quadrilateral Snake, Triple Quadrilateral Snake, Four Quadrilateral Snake graphs are Super Stolarsky-3 Mean labeling of graphs. The following definitions and theorems are useful for our present investigation.

A walk in which all the vertices $u_{1}, u_{2}, \ldots, u_{n}$ are distinct is called a path. It is denoted by P_{n}. A Quadrilateral snake $\boldsymbol{Q}_{\boldsymbol{n}}$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to two new vertices v_{i} and w_{i} respectively and then joining v_{i} and w_{i}. That is, every edge of a path is replaced by a cycle C_{4}. Double Quadrilateral snake $\mathbf{D}\left(\boldsymbol{Q}_{\boldsymbol{n}}\right)$ consists of two Quadrilateral snakes that have a common path. Triple Quadrilateral snake $\mathbf{T}\left(\boldsymbol{Q}_{n}\right)$ consists of three Quadrilateral snakes that have a common path. Four Quadrilateral snake $\mathbf{F}\left(\boldsymbol{Q}_{\boldsymbol{n}}\right)$ consists of Four Quadrilateral snakes that have a common path.

Definition 1.1: Let $G=(V, E)$ be a graph with p vertices and q edges. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ be an injective function. For a vertex labeling f , the induced edge labeling $\mathrm{f}^{*}(\mathrm{e}=\mathrm{uv})$ is defined by
f* (e) $=\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ (or) $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$. Then f is called a
Super Stolarsky-3 Mean labeling if $f(V(G) \cup\{f(e) / e \in E(G)\}=\{1,2, \ldots, p+q\}$. A graph which admits Super Stolarsky-3 Mean labeling is called Super Stolarsky-3 Mean graphs.

Theorem 1.2 [5]: Quadrilateral Snake Q_{n} is Super Stolarsky-3 Mean graph (S.S. Sandhya, E.Ebin Raja Merly and S.Kavitha).

2. MAIN RESULTS

Theorem 2.1: Double Quadrilateral Snake D $\left(Q_{n}\right)$ is Super Stolarsky-3 Mean graph. Proof:

Let $\mathrm{D}\left(Q_{n}\right)$ be the Double Quadrilateral Snake graph.
Consider a path $u_{1}, u_{2}, \ldots, u_{n}$.
To Construct $\mathrm{D}\left(Q_{n}\right)$. Join u_{i} and u_{i+1} to four new vertices $v_{i}, w_{i}, x_{i}, y_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Define a function $\mathbf{f}: \mathrm{V}\left(\mathrm{D}\left(Q_{n}\right)\right) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by
$\mathbf{f}\left(u_{i}\right)=12 \mathrm{i}-7,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=12 \mathrm{i}-8,1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=12 \mathrm{i}-4,1 \leq i \leq n$.
$\mathbf{f}\left(x_{i}\right)=12 \mathrm{i}-7,1 \leq i \leq n$.
$\mathbf{f}\left(y_{i}\right)=12 \mathrm{i}-1,1 \leq i \leq n$.

Then the edges are labeled with
$\mathbf{f}\left(u_{i} u_{i+1}\right)=12 \mathrm{i}-5,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=12$ i $-10,1 \leq i \leq n-1$.
$\mathbf{f}\left(v_{i} w_{i}\right)=12$ i $-6,1 \leq i \leq n-1$.
$\mathbf{f}\left(w_{i} u_{i+1}\right)=12 i-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} x_{i}\right)=12 \mathrm{i}-9,1 \leq i \leq n-1$.
$\mathbf{f}\left(x_{i} y_{i}\right)=12 \mathrm{i}-3,1 \leq i \leq n-1$.
$\mathbf{f}\left(y_{i} u_{i+1}\right)=12 \mathrm{i}, 1 \leq i \leq n-1$.
Then we get distinct edge labels.
Hence $\mathrm{D}\left(Q_{n}\right)$ is Super Stolarsky-3 Mean graph.
Example 2.2: The SuperStolarsky-3 Mean labeling of $\mathrm{D}\left(Q_{4}\right)$ is given below.

Figure 1
Theorem 2.3: Triple Quadrilateral Snake $\mathrm{T}\left(Q_{n}\right)$ is Super Stolarsky-3 Mean graph.

Proof:

Let $\mathrm{T}\left(Q_{n}\right)$ be the Triple Quadrilateral Snake graph.
Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$.
To Construct $\mathrm{T}\left(Q_{n}\right)$. Join u_{i} and u_{i+1} to six new vertices $v_{i}, w_{i}, v_{i}{ }^{\prime}, w_{i}{ }^{\prime}$ and $x_{i}, y_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Define a function $\mathbf{f}: \mathrm{V}\left(\mathrm{T}\left(Q_{n}\right)\right) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by
$\mathbf{f}\left(u_{i}\right)=17 \mathrm{i}-16,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=17 \mathrm{i}-13,1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=17 \mathrm{i}-6,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}{ }^{\prime}\right)=17 \mathrm{i}-11,1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}{ }^{\prime}\right)=17 \mathrm{i}-5,1 \leq i \leq n$.
$\mathbf{f}\left(x_{i}\right)=17 \mathrm{i}-9,1 \leq i \leq n$.
$\mathbf{f}\left(y_{i}\right)=17 \mathrm{i}-1,1 \leq i \leq n$.
Then the edges are labeled with
$\mathbf{f}\left(u_{i} u_{i+1}\right)=17 \mathrm{i}-7,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=17 \mathrm{i}-15,1 \leq i \leq n-1$.
$\mathbf{f}\left(\mathrm{u}_{\mathrm{i}} v_{i^{\prime}}\right)=17 \mathrm{i}-14,1 \leq i \leq n-1$.
$\mathbf{f}\left(v_{i} w_{i}\right)=17 \mathrm{i}-10,1 \leq i \leq n-1$.
$\mathbf{f}\left(\boldsymbol{v}_{\boldsymbol{i}}{ }^{\prime} w_{\boldsymbol{i}^{\prime}}\right)=17 \mathrm{i}-8,1 \leq i \leq n-1$.
$\mathbf{f}\left(w_{i} u_{i+1}\right)=17 i-3,1 \leq i \leq n-1$.
$\mathbf{f}\left(w_{i}^{\prime} u_{i+1}\right)=17 \mathrm{i}-2,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} x_{i}\right)=17 \mathrm{i}-12,1 \leq i \leq n-1$.
$\mathbf{f}\left(x_{i} y_{i}\right)=17 \mathrm{i}-4,1 \leq i \leq n-1$.
$\mathbf{f}\left(y_{i} u_{i+1}\right)=17 \mathrm{i}, 1 \leq i \leq n-1$.
Then we get distinct edge labels.
Hence T $\left(Q_{n}\right)$ is Super Stolarsky-3 Mean graph.
Example 2.4: The SuperStolarsky-3 Mean labeling of $\mathrm{T}\left(Q_{4}\right)$ is given below.

Figure 2
Theorem 2.5: Four Quadrilateral Snake $\mathrm{F}\left(Q_{n}\right)$ is Super Stolarsky-3 Mean graph.

Proof:

Let $\mathrm{F}\left(Q_{n}\right)$ be the Four Quadrilateral Snake graph.
Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$.

To construct $\mathrm{F}\left(Q_{n}\right)$, Join u_{i} and u_{i+1} to eight new vertices $v_{i}, w_{i}, v_{i}{ }^{\prime}, w_{i}{ }^{\prime}$, x_{i}, y_{i} and $x_{i^{\prime}}, y_{i^{\prime}}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Define a function $\mathbf{f}: \mathrm{V}\left(\mathrm{F}\left(Q_{n}\right)\right) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by
$\mathbf{f}\left(u_{i}\right)=22 \mathrm{i}-21,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}\right)=22 \mathrm{i}-18,1 \leq i \leq n$.
$\mathbf{f}\left(w_{i}\right)=22 \mathrm{i}-10,1 \leq i \leq n$.
$\mathbf{f}\left(v_{i}{ }^{\prime}\right)=22 \mathrm{i}-16,1 \leq i \leq n$.
$\mathbf{f}\left(w_{i^{\prime}}\right)=22 \mathrm{i}-7,1 \leq i \leq n$.
$\mathbf{f}\left(x_{i}\right)=22 \mathrm{i}-11,1 \leq i \leq n$.
$\mathbf{f}\left(y_{i}\right)=22$ i $-1,1 \leq i \leq n$.
$\mathbf{f}\left(x_{i^{\prime}}\right)=22 \mathrm{i}-11,1 \leq i \leq n$.
$\mathbf{f}\left(y_{i}{ }^{\prime}\right)=22$ i $-1,1 \leq i \leq n$.
Then the edges are labeled as
$\mathbf{f}\left(u_{i} u_{i+1}\right)=22 \mathrm{i}-5,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} v_{i}\right)=22$ i $-20,1 \leq i \leq n-1$.
$\mathbf{f}\left(\mathrm{u}_{\mathrm{i}} v_{i^{\prime}}\right)=22 \mathrm{i}-19,1 \leq i \leq n-1$.
$\mathbf{f}\left(v_{i} w_{i}\right)=22 \mathrm{i}-14,1 \leq i \leq n-1$.
$\mathbf{f}\left(\boldsymbol{v}_{\boldsymbol{i}}{ }^{\prime} w_{\boldsymbol{i}}{ }^{\prime}\right)=22 \mathrm{i}-12,1 \leq i \leq n-1$.
$\mathbf{f}\left(w_{i} u_{i+1}\right)=22 i-4,1 \leq i \leq n-1$.
$\mathbf{f}\left(w_{i}{ }^{\prime} u_{i+1}\right)=22 \mathrm{i}-3,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} x_{i}\right)=22 \mathrm{i}-15,1 \leq i \leq n-1$.
$\mathbf{f}\left(u_{i} x_{i^{\prime}}\right)=22 \mathrm{i}-17,1 \leq i \leq n-1$.
$\mathbf{f}\left(x_{i^{\prime}} y_{i^{\prime}}\right)=22 \mathrm{i}-8,1 \leq i \leq n-1$.
$\mathbf{f}\left(x_{i} y_{i}\right)=22 \mathrm{i}-6,1 \leq i \leq n-1$.
$\mathbf{f}\left(y_{i} u_{i+1}\right)=22 \mathrm{i}, 1 \leq i \leq n-1$.
$\mathbf{f}\left(y_{i}{ }^{\prime} u_{i+1}\right)=22 \mathrm{i}-2,1 \leq i \leq n-1$.
Then we get distinct edge labels.
Hence $\mathrm{F}\left(Q_{n}\right)$ is Super Stolarsky-3 Mean graph.

Example 2.6: The SuperStolarsky-3 Mean labeling of $\mathrm{F}\left(Q_{4}\right)$ is given below.

Figure 3

3. CONCLUSION

In this paper we discussed Super Stolarsky-3 Mean Labeling behavior of double, triple and Four Quadrilateral Snake graphs. The authors are of the opinion that the study of Super Stolarsky-3 Mean labeling of Quadrilateral Snake graphs shall be quite interesting and also will lead to new results.

4. ACKNOWLEDGEMENTS

The authors thank the referees for their valuable comments and suggestions.

REFERENCES

[1] J.A. Gallian, "A dynamic survey of graph labeling", The electronic Journal of Combinatories 17(2017),\#DS6.
[2] F.Harary, 1988, "Graph Theory" NarosaPuplishing House Reading, New Delhi.
[3] P.Jeyanthi, D.Ramya and P.Thangavelu, On super mean labeling of some graphs, SUTJournal of Mathematics, 46(1) (2010), 53-66.
[4] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Graphs" Communicated to Journal of discrete Mathematical Sciences and Cryptography.
[5] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Super Stolarsky-3Mean labeling of Some Path Related graphs" Communicated to International Journal of Mathematical combinatorics.
[6] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Stolarsky-3 Mean Labeling of Some Special Graphs" Communicated to Global Journal of Pure and Applied Mathematics.
[7] S.S.Sandhya, E. Ebin Raja Merly and S.Kavitha "Some New Results on Super Stolarsky-3 Mean Labeling" Communicated to International Journal of Mathematics Research.

